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OPTIMAL DAMPING AND STOCHASTIC CONTROL IN CERTAIN
AERODYNAMIC PROBLEMS

V. T. Tarushkin

On the basis of methods of controllableFbrkovianrandom pfo— /114
cesses is constructed a theory of optimal damping. The case where ‘
interference is a process of the white noise type,is discussed in-
dividually and for it is given a derivation of!all main relation-
ships of the theory of random processes. The appl%caticn of this
theory to the problem of retarding rotation of an aircraft is given.

1. Methods of stochastic control and the theory of
‘ optimal damping

Given that an n-dimensional vectorial Markovian diffusion
process y satisfies a system of stochastic differential e’uations
in the Ito form: '

IS, [ PR S

d_v(t —‘f[t y(t) u]dt+u[t y(t) u]dw
L —~} (1.1)

Here f is the n-dimensional vector of transposition, an C-matrix
of diffusion of dimensionality n % m, where w is an m-dimensional
process of Brownian motion with a unique dispersion parameter,
‘ult, v(t)] is an r-dimensional vector of control effects from a
given set U of permissible piecewise-continuous functions. Limi-
tations on transposition, diffusion and control are given such
that eguation {(l1.1l) for several intgrvals of [TO, 7] [ [0, ) is
egquivalent to the integra; equation

y )=y () + f_f[s, y (5), u]ds+

fsh ¥ (s), ahﬁw&) (1.2}

e g R o meet—



For equation (1.2) are assumed fulfilled the conditions of tﬁe

theorem of existence and unigqueness of the diffusion Markovian
process, in the interval [TO, 1] with initial conditions y(1g)

[1-2]. It is also assumed that the interval {0, T] can be dis-
covered with the aid of a finite number of intervals of the form

[TO' T]l, where To is in identity with any moment of motion along

the trajectory, and --with the moment of acquisition of the

surface of reversing by the system. Under the condition that for

each moment t (- [0, T} it known an observable value of y, of the /I15

process v(t), we must find the minimal value of the functional

{fl[f y(f) u[f,y(f)l] df/y(O) yo} i < (1.3)

J— —————— ——

for u f—U. Here E is a symbol of mathematical exXpectation.

Let us introduce the function

I VIt y(t) :?f y(r als y ()l

_ and also define the o-algebra of Y. = d{ys, 0 £s <t} , generated
by the values of ¥g for 0 < s < t.+ Due to the fact that for any
t { [0, T] vy, = y(t),

o J‘ﬁ’:‘-i’f’ 1”’5* Vlf y:l!ﬁ

Since y, is measured with respect to Y., theorem 8.3 [3] (p. 27)
yields the condition at which with a probability of 1

BV =V - |

The condition of applicability of this theorem consists of the
fact that function V(t, y,) is for t £ [0, T] measurable with re-
spect to Y., and also E|V(t, y.)| < =.
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Therefore, with a probability of 1 takes place

Vi s=e[ 11y, e yelsrf-

(1.4)

Relationship (1.4) is a stochastic function of Lyapunov [4-5] for
which '

;;; ,_L-"__:_,‘j (1.5)

Let us find the optimal control based on the Bellman equation:

?'ﬂﬁ[ f+f7 +§4r 255+L] .j (1.6)

)

Here the prime ' signifies transposﬁtion, and the symbol tr--the
matrix spur.

From equation (1.6) it follows that'if the diffusion matrix
o and function L do not depend on control, the minimum in (1.6)
is attained when the minimum of function

_w (1.7)

e

- —f dyt -

is alse attained. The relation (1.7) is introduced in [6] as a
criterion of optimal damping of a determinate Lyapunov function.

To substantiate relations (1.6)}~(1.7), let us apply the method
systemétically developed in [4-5] and prove the theoremsvwhich - /116

define optimal control.

Let us introduce the operator A(u} which applies to the func-

tion V yielding

. . —_—
‘.mmg~m+2w a+f F 2 (1.8)



With the aid of (1.8), "the Ito differential formula [2] is written
in the form

TR

LV y)=|A@ V) di+V pdu. ! (1.9)

Integrating (1.9) and taking the arbitrary mathematical expecta-~
tion, we arrive at the integral formula of Dynkin-Ito [4-5], which

with allowance for (l1l.5) is written as

BV yri=E [ vy,

{1.10)

Given ug { U satisfies egquation (1.6}, then takes place for t'{
{ 10, T

. A(uu)v‘l‘]—[f )’rr ”o] “'3‘(“‘)‘/"}'1-[*f }’t‘ u] \

e e [P .

(1.11)

Integrating (1.11) and taking the arbitrary mathematical expecta-
tion with allowance for {(1.10}, we find that

e e e . P

. - {f L= 7y- uo]dr/}’} {fL[r, V. u]'d-;jy?},, ’ (1.12)

or due to (1l.4) we have

VU hWMQVU %W}fem?j‘_w (1.13)}

m————y

Therefore, the followiné assertionris proven.

Theorem: The condition of optimal damping is a sufficient
criterion for finding the optimai control under the condition
that the integrand of the function and the diffusion matrix @are
notexplicitly control-dependent.



2. Control in the Presence of White Noise

_ Let us introduce the Gaussian random process v[t, y(t})] of
the white noise type, having a zero mean of .

-Lw__...

Elv(t, gy @=yl=0_ | (2.1)

and a covariation matrix

Bl {fv[t Y@l y(s)] |y @)=y]=R(4 yJ?“f:”,T (2.2)

where §(t - s) is a Dirac function, R = ¢o'. We will show that
if (1.2) underoges a formal substitution of
- d R ..
TG = (2.3)
the basic relations of the preceeding section can be derived on /117
the basis of ordinary analytic methods of generalized Dirac func-

tions.

Equation (1.2) is written as follows for this case

IS T

¥ (”)=}'(To)+1jn1fds+ ffo.d& . (2.4)

féépmiﬁﬁ-in (2.4) that 1y = t, 7 = t + At, Ay, = y(t + At) - y(¥),
and taking into account (2.1) and (2.2), we find that

lim -_{;-E BYdY Oy=yd =St yo 212, yf)}

33310; E 89,8511 0= =R . 30, (2.5)
Iet us introduce the funtion of risk
- .
S(f yt) E JL[‘t 3,(1) u[f y(f)l]dffy {t)= } \ (2.6)_

. “...*....__H - e | vt -



Function (2.6) has the same meaning as (l1.4). 1It‘is easy to see
that with a probablllty of 1 takes place

E{S( 30y O=9)=St ), E|25 |yt yf} afﬁ fj
E{Mfy(t) } as(gtyf)’ e

T lese -' (2.7)
E{ ( yt)/y(t) )’:} 'aS((;;fyd’ .

| E{‘?%A_’_“)/y(th TR

These properties follow from the definition of the risk function
and can be formally proven with the aid of the aforementioned
theorem 8.3 [3].

Let us consider the expansion bf the ¥isk function into a =

Taylor series up to terms of the second power exclusively

S5t yoiby) =St y)+ SGH0 IS 90 pp 4

. a8 (¢, ;
. _I_ y ( yf)+ A 0 g;ta;v:) At+

+ INSUyAAp+_ s asuygA”Ay

o e

.

(2.8)

It is easy to see that rgIgﬁidn§h£p5(2.é}gﬂélthough it externally

. resembles (1.9), does not correspond to it, since white noise as
‘.a‘generaiized'deri%ative of Brownian motion is defined by equation /118
~.(2.2) and an by the formal rélationship

“ —.——--A-.-..._.....:_.-

‘__;7“' Ayf fAiTUM ; A,

From (2.8),'#ith allowance for (2.5}, (2.7), we find that
&

Al;glﬂ E{M {S(t+ar yf+Ay,)-—S(t YUY (O =y =

X . s ¢,
. 6 B ’ +f L 2 tr d(y_“"-?yt)R.

L w reh e emm e m———

(2.9)

2o e
- e



Let us note that in virtue of (1.8), the right side of (2.9) can
be written in the form A(u)S. It is easy to see that since in
(2.9) the arbitrary mathematical expectation is already taken,
there takes place ‘

’

EIA@Sly (0=y)=A@S. |

e PTG (2.10)
In virtue of (2.10), relationship (2.9)'is rewritten as
| E{%%/.v (t)=yf}=E'{A(tf)_S—j;f(_f)%y;}- 1 , (2.11)

e e e 1 —— e =

Integrating (2.1l) with allowance of the fact that S(T, xT) = 0,
we- find that

E{—S8(t y)iy (f) Y{ {fA(u)Sdfy(t)ﬁ'yf}..k-

| Bzt ooy

(2.12)

¢
@

Relation (2.12) is analogous to the Dynkin-It¢ formulay, (1.10).

In virtue of the principle of optimacy of Bellman, we find that

S( yd=minE (L[ . u (e y)las+
ueg -

e L ESEHAL y Ay (=yd.
(2.13)
Equation (2.13) in virtue of (2.7) is rewritten as
S 2 minE(Ll Voo u(t, yOIAEHS (E+AL, y,+ay)—]
. v . meg ‘ i
' o TS ylyW==0.
o o (2.14)

Let us divide both side of equation (2.14) by At and convert to
the limit where At =~ 0. In virtue of (2.9), we find the equation

QRS : - - (2.15)
mm[atﬂ' gt o R+L]==0 \ 7

o WA e

e -

S e e e = e o= —



- Equation (2.15) corresponds to (1.6}.
If u= U, satisfies (2.15), then there takes place

| A(uo)S+L[t yt. uolgA(u)sH[z Y al J (2.16)
Integrating (2.16) and taking the arbitrary mathematical expec-
tation, we derive with allowance of (2.12) that

E{f Lz 'y,”uo) d-:/y (t)-- y,} {I Lz y, w)dely (t)ﬂqj

R o (2.17)

Relationship (2.17) is analogous to (1.12}. N

Aside from the discussed analogy between the processes of /119
white noise and Brownian movement, as a result of this section we -
can assert that if {(2.13) is a necessary condition of optimacy,
and the.boundary value problem (1.5)-(1.6) has a unigue soclution,

then the necessary and sufficient criteria of optimacy coinc¢ide.
3. Retardation of Aircraft Rotation

Let us denote through 1x’ 1y’ lZ the projections of kinetic
momentum on an axis ofi’a’ Systém.ofi.coordinates’ associated. with. 'an

‘apparatus. i, and by Uy U, u --projections of direction momentum

, v’
on the same axis. Assuming that we have selected the main axes

. -
of coordinates, the equations of motion of the apparatus will be

derived in the form

(z fy)

dlo+ 2L 11 dt=u, dito,du,,

dl it UI 3 lzlxdt uydt—i-u du,

~"""""" dl_’_(yfx)

(3.1)
Zl di=u, dt—l—u dv,.

°



Here Ix"Iy"Iz

i i a g g ar
are moments of inextia, xdvx,, ydvy,, 29V, e

projections of perturbing moment which are the products of cons<

tant coefficients of diffusion o, o_, 0, multiplied by increases

Y

in independent Brownian movements vx,'vy, v

Z-

In the regularly employedfm@térs [7]1, projections of the

angular velocities are measured. Considering that the measuring

circuit contains elements which multiply the measurable signal

by moments of inertia, we will consider that projections of kine-~ .

tic momentum are being measured. Therefore, equations for the

measurable coordinates have the form

xe=lyy y=l, z=l,

(3.2)

In the capacity of a function for optimal damping, we will select

_1
V=3

case will be written as

(x2 + yz

. f=xux+yuy—|;ég."- \

-~

+ 22). The minimized relationship (1.7) in this

(3.3)

Lét us consider the following cases of limitations on the direc~-

tional momentum.

1. Directisnal momentum is not limited.

The scalar pro-

duct of (3.3) will be minimal when the control vector is anti-

parallel to the vector {x, y, z }', i.e., u= {-kx, -ky, -kz} ',

k = const > 0.

2. PRach of the components of the

limited in amplitude, i.e., |uX| < T

T, T , T are several constants. " In
X Yy z

Ur= —?:“ .Sign X, wy=—T,signy,

N -

™~

directional momentum is

Iuyl ;Ty' qul

this case

< Tz’ where

/120



&

Directional momentum is limited in modulus, i.e., sfu| <

3.
< T, T = const. In this case

fy=—

X
Varyss B 7 Vityita

U,=—17T 4

4
. P N S—
e e e e o Vaigyrge o

For the case where there

is no interference in the measure-

ment channel, the structure of the first two laws without re-

search of optimacy is cited in [7}. The derivation of the third

law in the absence of interference as control of rotation in terms

of speed of response is cited

in [8].

Let us note that the simplest structure of control is derived

in the first instance. But it has a limited application, since in

practice the directional moments are usually limited. The most

g - [

Gy “xr

——e o]

C e e

Yeagdnressy ofsexnn

Ly ra; sign;r

signx T

gl
]

Structural diagram of com-
puter device implementing
~law of control with re-~
spect to channel 1.

of the computers implementing

complex is the structure of control
derived in the third case, which re-

.quires for its redlization the use

of nonlinear signal transformers.

The second case is most optimal from
the standpoint of simplicity of re-
alization allowing for the limita-
tions. In this context, control of
all three channels is done indepen-
dently, while the structural circuits
the laws of contrel are identical.

The structural diagram of a computer for this case, which realizes

the law of control with respect to channel 1, is given in the fi-

gure.

The scheme of formation of the law of control includes a

threshold element (1} at whose input enters signal x; at the out-

10



put we have signal sign x, and also element (2) which multiplies
the signal sign x by the number T

Let us condider the case of absent interférence, when V =

= l 2 2 2 A = = = i )
= 2(lX + ly + 12),,and 9. “‘GY 9, 0.' It is easy to see that
in virtue of (3.1)
A R
B ~1d, +z)1,,+z,zz [ LA+ "”‘ L+

—
+ ,,’ t,z,zz]+zxux+za +iu,

(3.4)
The expression in sqﬁare brackets in (3.4) is transformed to the /121
form
. Iyy, [ley L el Tyl 1y1x+1,1f—1,1 ] - L
TyEL RRAA :
and vanishes. Hence (3.4) is written as
av ‘
a!t =1 u-f"‘iy”y"'l“ o {3.5)
Let us note that (3.5) has the same meaning as (3.3); for the
three laws of control it 1s negative, ensuring decrease of kine-
tic momentum.
In the stochastic case, by formula (1.9) we find that
. dv‘ ”; [z e,
. ' xyz+ 1; «’C)’ z+ i, xyz}dt—!—
+[xux+yu +zuz]dt+ (Ux+cy+c,,) dt + '
e —I—xsxdfvx—i-yc d'v +zcs dfu
(3.6)

Let us note that in (3.6) the expression in the first square
brackets vanishes as before. Taking the arbitrary mathematical

expectation in (3.6), we find that
11



Relationship (3.7) shows that the rate of decrease in kinetic

momentum is largely dependent on interference.

12
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